

Cessna Wing Spar Reinforcement

Introduction

Wing Spar Reinforcement

Wing Spar Reinforcement

- Cessna has issued mandatory service bulletins to install wing main spar reinforcement straps to assure continued airworthiness of Cessna's Model 400 series airplanes
- The wing spar reinforcement strap is the way to assure continued airworthiness without reliance on repetitive inspections

Installation Times

Model	Service Bulletin & Service Kit	Installation Time
401	MEB01-6 and SK402-46	6500 Flight Hours
402	MEB01-6 and SK402-46	6500 Flight Hours
402C	MEB02-5 and SK402-47	15000 Flight Hours
411	MEB01-7 and SK411-59	5500 Flight Hours
414A	MEB02-5 and SK402-47	9000 Flight Hours (Units 1-200) 15000 Flight Hours (Units 201 & On)

Model 401/402/411 Wing Strap

Model 402C/414A Wing Strap ATextron Company

Agenda

- Airframe Design History
- Fatigue General Concepts
- Analysis
- Fatigue Tests
- Field History
- NDI Options
- Wing Modification Options
- Conclusion

Airframe Design History

Cessna 300 & 400 Series Airplanes

Cessna Model 402

Airframe Design History

- Cessna Model 402 (402/402A/402B)
 - Model 402 designed in 1967
 - Twin-engine unpressurized airplane
 - Seats up to 9 passengers
 - Dry wing with tip tanks
 - Model 402 wing structurally similar to Cessna Model 310 wing
 - Two spar design
 - The first Model 310 was designed in 1954
 - Certified to CAR 3 requirements
 - No specific fatigue or failsafe requirements
 - Spar caps made from 7075-T6 material
 - High strength aluminum, high crack growth rate
 - Gross weight for Model 402 significantly increased over Model 310 gross weight

Airframe Design History

Airplane Certified Gross Weight

Model	Gross Weight (lb)	
310	4600	(original)
	5500	(later models)
401	6300	
402	6300	
411	6500	
402C	6850	
414A	6750	

Airframe Design History

- Cessna Model 402C
 - Designed in 1979
 - Two spar design
 - Wet wing, no tip tanks
 - Spar caps increased in size over Model 402
 - Made from 7075-T76511 aluminum
 - Improved fatigue characteristics

Airframe Design History

- Cessna Model 414A (units 1-200)
 - Wing is structurally similar to Model 402C
 - Spar cap is same size as Model 402
- Cessna Model 414A (units 201 and on)
 - Wing is structurally similar to Model 402C
 - Spar cap is same size as Model 402C
- Cessna Models 401 and 411
 - Wing is structurally similar to Model 402
 - Spar cap is same size as Model 402

Agenda

- Airframe Design History
- Fatigue General Concepts
- Analysis
- Fatigue Tests
- Field History
- NDI Options
- Wing Modification Options
- Conclusion

Fatigue

General Concepts

Fatigue

- What is fatigue?
 - In the airplane, the metal atoms cluster together in crystals
 - Every time the airplane takes off, hits a gust, pulls a maneuver or lands, the loads push and pull on the metal atoms so that microscopic cracks develop in the crystal
 - With each load, these cracks jump from one crystal to the next
 - Thus, flight by flight the crack grows
 - This process is called fatigue because the metal gets tired after being loaded and unloaded over and over again

Fatigue Fracture Face

Fatigue Striations

Beach Marks

Fatigue

- Fatigue can be deadly
 - According to a Canadian survey, metal fatigue contributed to 2240 deaths in 1885 airplane accidents between 1927 and 1980¹
 - Over 700 people have died in fatigue related accidents since 1980²

Campbell and Lahey 1984, 'A Survey of Serious Aircraft Accidents Involving Fatigue Fracture', International Journal of Fatigue, January 1984

^{2 &#}x27;Investigation into Ansett Australia Maintenance Safety Deficiencies and the Control of Continuing Airworthiness of Class A Aircraft', Appendix 8 from the Australian Transport Safety Bureau's web site, www.atsb.gov.au.

Aloha Airlines - 1988

Lockheed C130A - 2002

Fatigue

- Fatigue is inevitable
- If a crack is not found and fixed, the crack will continue to grow
- The longer the crack grows, the faster it grows until there is not enough structure left to carry the load and the part breaks
- We can't stop the fatigue process
- We can control its dangerous effects

Options For Controlling Fatigue ATextron Compar

Options For Controlling Fatigue ATextron Company

When Will It Crack?

- Suppose 1000 identical wing spars were fatigue tested with the same loads
- Assume the average wing spar breaks at 10,000 hours
- They won't all break at the same time

1000 Wing Spars Fatigue Tested

When Will It Crack?

- First wing spar will break at 2,500 hours
- Last wing spar won't break until after 120,000 hours
- The problem is that we don't know beforehand which one will break first
- When is action required?
- What level of risk do we accept?

When Is Action Required?

When Will It Crack?

- Other factors which may also lower the expected life of the spar
 - Corrosion
 - Accidental Damage
 - Repairs
 - Manufacturing Variation
 - Environment

Options For Controlling Fatigue

3. Field Experience

Agenda

- Airframe Design History
- Fatigue General Concepts
- Analysis
- Fatigue Tests
- Field History
- NDI Options
- Wing Modification Options
- Conclusion

Analysis

Fatigue & Crack Growth

Analysis

- Fatigue analysis
 - Determine when the part is first expected to crack
- Crack growth analysis
 - Determine how fast a crack will grow
- Residual strength analysis
 - Determine how much load a part will carry with a certain size crack

Crack Growth Analysis

Flight Hours

Crack Growth Analysis

Crack Length (inches)

Flight Hours

Analysis

- Models 401, 402, 411
 - Fatigue analyses first conducted shortly after certification (1970s)
 - 8,200 hours for Models 401 and 402
 - 6,800 hours for Model 411

FAA Public Meeting –Proposed Cessna Wing Spar AD 3-4 March 2004 – Washington D.C.

When Is Action Required?

Analysis

- Models 401, 402, 411
 - Basis of life limits in Australia and United Kingdom
 - Lowest fatigue life is BW-5, WS 75.66
 - Second lowest fatigue life is BW-4, WS 66.70

Main Spar Analysis Locations Models 401/402/411

Analysis

- Models 401, 402, 411
 - In 1997, new analyses were accomplished as part of the FAA SID (Supplemental Inspection Document) contract for the Models 401/402
 - New analyses were later completed for Model 411
 - Fatigue analysis
 - 5,400 hours for Model 411
 - 5,800 hours for Model 402

Analysis

- What load will the Model 402 wing carry if the main spar cap breaks?
 - The wing will carry less than 70% of limit load
 - Limit load is the largest load the wing is expected to see in a lifetime
 - CAR 3.173 of the original certification basis does not provide for relaxation of the strength requirements based on age
 - Therefore the wing cannot carry the required load
 - Applicable to wings with the smaller spar caps,
 Models 401, 402, 411 and 414A, units 1-200

Analysis

- Models 402C and 414A
 - Fatigue analyses first conducted about the time of certification (late 1970s)
 - 6,400 hours for Model 414A, units 1-200, and 13,700 hours for Model 414A, units 201 & on

 FAA Public Meeting -Proposed Cessna Wing Spar AD
 3-4 March 2004 Washington D.C.
 - 7,700 hours for Model 402C

When Is Action Required?

Analysis

- Models 402C and 414A
 - Basis of life limits in Australia and U.K.
 - Lowest fatigue life is CW-3, WS 80.52

Analysis

- Models 402C, 414A
 - In 1997, new analyses were accomplished as part of the SID contract for the Model 402C
 - New analyses accomplished later for Model 414A
 - Fatigue analysis
 - 9,100 hours for Model 414A, units 1-200
 - 15,000 hours for Model 414A, units 201 & on
 - 15,000 hours for Model 402C

Analysis

- What load will the Model 402C wing carry if the spar cap breaks?
 - The wing will carry 100% of limit load for a period of time after the spar breaks (based on analysis and full-scale test results)
 - Applicable to wings with the larger spar caps,
 Models 402C and 414A, units 201 & on

Agenda

- Airframe Design History
- Fatigue General Concepts
- Analysis
- Fatigue Tests
- Field History
- NDI Options
- Wing Modification Options
- Conclusion

Fatigue Tests

- The accuracy of the analysis is verified by fatigue test results
- Two fatigue tests were conducted on the Model 402 wing
 - First test conducted in 1974.
 - Main spar lower cap broke after 14,000 simulated flight hours
 - Three other cracks developed in spar cap during 63,000 simulated flight hours

Fatigue Tests

- Second test conducted in 1975.
 - Wing with a "short" reinforcement strap tested for 40,000 simulated flight hours
 - After testing was completed, the spar cap was cut and wing tested to limit load (strap intact) without failure
 - During teardown examination, small cracks were found in spar cap in areas not reinforced by the reinforcement strap

Agenda

- Airframe Design History
- Fatigue General Concepts
- Analysis
- Fatigue Tests
- Field History
- NDI Options
- Wing Modification Options
- Conclusion

Field History

- The accuracy of the analysis is further supported by field history
 - Spar cap cracks have been discovered on six Model 402 airplanes
 - Five cracks were between WS 66 and WS 75 (analysis locations BW-4 and BW-5)
 - Sixth crack was at WS 81
 - Four instances were complete spar failure
 - Cracks were found between 8000 and 16,000 hours
 - All these airplanes were utilized in commuter service at the time the crack was found

Field History

- One spar cap failure on Model 402C
 - Crack found after 20,400 hours
 - Crack located at WS 86.00, five inches from analysis location CW-3
 - This airplane was used to carry cargo at the time the crack was discovered

Notes: Crack originated in fastener hole (402)

Crack originated at spar cap edge (402C)

Fatigue test crack origin (reference)

Aft

402-0295 Fracture Face

402-0101 Fracture Face

402A-0080 Fracture Face

Analysis/Test/Field Comparison Textron Company

Options For Controlling Fatigue

Agenda

- Airframe Design History
- Fatigue General Concepts
- Analysis
- Fatigue Tests
- Field History
- NDI Options
- Wing Modification Options
- Conclusion

Existing NDI Procedure

- In 1979, Cessna issued Service Bulletin
 ME79-16 for the Models 401, 402 and 411
 - Surface eddy current inspect spar every 400 hours
 - AD 79-10-15 issued
 - At that time, this seemed to be the best way to protect the fleet
 - Now this inspection is viewed as inadequate to protect fleet

Existing NDI Procedure

- The industry standard is to find a crack with 90% probability of detection with 95% confidence
 - Surface eddy current method (per ME79-16 and AD 79-10-15) won't find crack until it is .19" which is .03" longer than the crack length which will no longer allow the spar to carry limit load
 - Once the spar is broken, the wing will no longer carry the required loads
 - Wing failure can occur in a very short period of time after spar cap breaks

Crack Length (inches)

Crack Growth Analysis

Flight Hours

Existing NDI Procedure

Existing NDI Procedure

- The eddy current procedure (per ME79-16 and AD 79-10-15) has been successful only once in finding a spar cap crack
 - Inspection was conducted by experienced Cessna NDI personnel
- Reliability of inspection is hampered since much of the main spar flange is covered by doublers

Doubler Over Spar Cap

Options For Controlling Fatigue ATextron Company

Alternate NDI Inspection?

- An alternative to low frequency surface eddy current is bolt hole eddy current
 - Will find a .08" crack, which is before wing loses ability to carry the required loads
 - Requires removal of about 175 rivets
 - Repetitive inspection is less than 400 hours
 - This method is destructive and impractical

Models 402C and 414A

- Cessna Service Bulletin MEB99-3 requires visual inspection every 100 hours for the Model 402C
 - Service bulletin intended as an immediate response to Model 402C accident
 - 100 hours based on analysis showing wing will retain its required strength for 600 hours after main spar cap failure
 - AD2000-23-01 issued
- Cessna Service Bulletin MEB00-7 requires visual inspection every 100 hours for the Model 414A
 - No AD issued in US, however foreign countries have issued an AD

Models 402C and 414A

- A diligent inspection of the spar should find a crack before the wing loses its ability to carry the required loads
- Potential for less than diligent inspections and FAA guidance material AC91-56B requires additional measures be taken to provide terminating actions

FAA Guidance

- FAA Advisory Circular AC91-56B, "Continuing Structural Integrity Program For Airplanes"
 - Requires airplane modification if cracking will have catastrophic consequences, and
 - NDI inspections will not reliably find cracks

Options For Controlling Fatigue ATextron Company

Retirement

- Australia CASA
 - Originally chose the life limit approach to control fatigue
 - Replace spar cap after one lifetime or modify wing with reinforcement strap
 - Retire entire airframe after two lifetimes
 - Retirement lives removed in 2000 if owner complies with Cessna SID Document

Retirement

- United Kingdom CAA
 - Also chose the life limit approach to control fatigue
 - Retire airframe after one lifetime
 - Retirement lives removed in 2003 if owner complies with Cessna SID Document
- CASA and CAA retirement lives based on original Cessna fatigue analyses
- Retirement is not the preferred option

CASA/CAA Life Limits

Model	Hours	Flights
401	8,200	12,600
402/402A/402B	8,200	12,600
402C	7,700 (CASA)	13,200
	9,400 (CAA)	
411	6,800	10,500
414A (1978, units 1-200)	6,500	5,900
414A (1979-1985)	13,700	12,500
414A (1978, units 1-200)	3,300	3,000
With RAM winglets		
414A (1979-1985)	6,900	6,300
With RAM winglets		

Agenda

- Airframe Design History
- Fatigue General Concepts
- Analysis
- Fatigue Tests
- Field History
- NDI Options
- Wing Modification Options
- Conclusion

- Four options were considered on how to modify the wing
 - Option 1: Cold-working spar cap fastener holes
 - Advantages
 - Significantly improves fatigue life at fastener holes
 - Disadvantages
 - Will not improve fatigue life if crack does not start from a fastener hole
 - At least one of the spar cap cracks in the field did not pass through a fastener hole
 - Ineffective and or detrimental if fastener hole is too close to the edge of the part

- Option 2: Remove and replace spar cap
 - Advantages
 - Time for fatigue crack to develop is reset to zero for the spar cap
 - Disadvantages
 - Will require more fasteners to be removed than installation of wing spar reinforcement strap
 - Spar cap will need to be replaced more often (6,500 hours for 402) than the wing reinforcement strap inspection (20,000 hours)
 - Installation time and cost

- Option 3: Shorter reinforcement strap
 - Advantages
 - It is less intrusive than Cessna recommended wing reinforcement strap
 - Disadvantages
 - During fatigue testing, cracks developed just outboard of the end of the strap
 - Installation time and cost

- Option 4: Long reinforcement strap
 - Strap in MEB01-6, MEB01-7 and MEB02-5
 - Advantages
 - Provides reinforcement to all highly loaded areas
 - NDI inspections are not required for 20,000 hours for Model 402
 - Disadvantages
 - Installation time and cost

M400 Series SID/Strap

Airplane	SID Release Date	Strap Availability
401/402	Released	9/2001
402C	Released	6/2002
404	2005+	Not Required
411	Released	9/2001
414	Released	3/2003
414A	Released	6/2002
421	Released	3/2003
421C	Released	2004
425	2005+	7/2002
441	2005+	Not Required

M300 Series SID/Strap

Airplane	SID Release Date	Strap Availability
310 thru 310D	Released	2004+
310F thru 310K	2005+	2004+
310L thru 310N	2005+	2004+
310P thru 310Q	2005+	2004+
310R	2005+	2004+
320 ('62-'65)	Released	2004+
320 ('66-'68)	2005+	2004+
335	2005+	2004+
340	2005+	2004+

Agenda

- Airframe Design History
- Fatigue General Concepts
- Analysis
- Fatigue Tests
- Field History
- NDI Options
- Wing Modification Options
- Conclusion

Conclusion

- Currently mandated inspection methods are inadequate to detect fatigue cracks in the wing spar before the wing can no longer carry the required loads
- This conclusion is based on analyses, testing and field data
- The wing spar reinforcement strap is necessary to address the continued airworthiness of these airplanes
- Failure to install the reinforcement strap or some other alternate means of compliance to achieve similar results, will increase the likelihood that a fatal accident will occur due to spar cap cracking